Schottky Rectifier
 New Generation 3 D-61 Package, 2×55 A

115CNQ015A

D-61-8

D-61-8-SM

115CNQ015ASL

D-61-8-SL

PRODUCT SUMMARY	
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 55 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}$ at $\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$	15 V

FEATURES

- $125^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{J}}$ operation $\left(\mathrm{V}_{\mathrm{R}}<5 \mathrm{~V}\right)$
- Center tap module
- Optimized for OR-ing applications
- Ultralow forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- New fully transfer-mold low profile, small footprint, high current package
- Designed and qualified for industrial level

DESCRIPTION

The 115CNQ015A center tap Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to $125^{\circ} \mathrm{C}$ junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS

SYMBOL	CHARACTERISTICS	VALUES	UNITS
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Rectangular waveform	110	A
$\mathrm{~V}_{\text {RRM }}$		15	V
$\mathrm{I}_{\mathrm{FSM}}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	5050	A
$\mathrm{~V}_{\mathrm{F}}$	55 Apk, $\mathrm{T}_{J}=75^{\circ} \mathrm{C}$ (per leg)	0.33	V
$\mathrm{~T}_{J}$	Range	-55 to 125	${ }^{\circ} \mathrm{C}$

VOLTAGE RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	115CNQ015A	UNITS	
Maximum DC reverse voltage	V_{R}	$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	15	V	
		5			

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average Morward current See fig. 5 per leg per device	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	50% duty cycle at $\mathrm{T}_{\mathrm{C}}=112{ }^{\circ} \mathrm{C}$, rectangular waveform		55 110	A
Maximum peak one cycle non-repetitive surge current per leg See fig. 7	$\mathrm{I}_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse 10 ms sine or 6 ms rect. pulse	Following any rated load condition and with rated $\mathrm{V}_{\text {RRM }}$ applied	5050 830	A
Non-repetitive avalanche energy per leg	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {AS }}=2 \mathrm{~A}, \mathrm{~L}=4.5 \mathrm{mH}$		54	mJ
Repetitive avalanche current per leg	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $\mathrm{V}_{\mathrm{A}}=3 \times \mathrm{V}_{\mathrm{R}}$ typical		2	A

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL		DITIONS	VALUES	UNITS
Maximum forward voltage drop per leg See fig. 1	$\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$	55 A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.37	V
		110 A		0.46	
		55 A	$\mathrm{T}_{\mathrm{J}}=75^{\circ} \mathrm{C}$	0.33	
		110 A		0.43	
Maximum reverse leakage current per leg See fig. 2	$\mathrm{I}_{\mathrm{RM}}{ }^{(1)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	20	mA
		$\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$		1200	
		$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$	900	
		$\mathrm{T}_{\mathrm{J}}=100{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	540	
Maximum junction capacitance per leg	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ DC (test signal range 100 kHz to 1 MHz) $25^{\circ} \mathrm{C}$		5500	pF
Typical series inductance per leg	Ls	Measured lead to lead 5 mm from package body		5.5	nH
Maximum voltage rate of change	dV/dt	Rated V ${ }_{\text {R }}$		10000	V/ $/ \mathrm{s}$

Note

(1) Pulse width $<300 \mu \mathrm{~s}$, duty cycle $<2 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction temperature range	T_{J}		- 55 to 125	${ }^{\circ} \mathrm{C}$
Maximum storage temperature range	$\mathrm{T}_{\text {Stg }}$		- 55 to 150	
Maximum thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$	DC operation See fig. 4	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum thermal resistance, junction to case per package		DC operation	0.25	
Typical thermal resistance, case to heatsink (D-61-8 only)	$\mathrm{R}_{\mathrm{th} \mathrm{Cs}}$	Mounting surface, smooth and greased Device flatness < 5 mils	0.30	
Approximate weight			7.8	g
			0.28	oz.
Mounting torque minimum			40 (35)	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf $\cdot \mathrm{in}$)
(D-61-8 only) maximum			58 (50)	
Marking device		Case style D-61-8	115CNQ015A	
		Case style D-61-8-SM	115CNQ015ASM	
		Case style D-61-8-SL	115CNQ015ASL	

115CNQ015A
Schottky Rectifier Vishay High Power Products New Generation 3
D-61 Package, $2 \times 55 \mathrm{~A}$

Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

Fig. 4 - Maximum Thermal Impedance $Z_{\text {thJc }}$ Characteristics (Per Leg)

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

Fig. 6 - Forward Power Loss Characteristics (Per Leg)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Fig. 8 - Unclamped Inductive Test Circuit

Note

(1) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{t h J C}$;
$\mathrm{Pd}=$ Forward power loss $=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \times \mathrm{V}_{\mathrm{FM}}$ at $\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV})} / \mathrm{D}\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=5 \mathrm{~V}$

ORDERING INFORMATION TABLE

1 - Current rating (110 A)
2 - Circuit configuration:

- C = Common cathode

3 - Package:

- $\mathrm{N}=\mathrm{D}-61$

4 - Schottky "Q" series
5 - Voltage rating ($015=15 \mathrm{~V}$)
6 - Package style:

- $A=D-61-8$
- ASM = D-61-8-SM
- ASL = D-61-8-SL

Standard pack quantity: $\mathrm{A}=10$ pieces; $\mathrm{ASM} / \mathrm{ASL}=20$ pieces

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95354
Part marking information	http://www.vishay.com/doc?95356

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

